System Architecture Overview ============================ The Personal Finance Platform follows a modular, service-oriented architecture built on Django with Celery for asynchronous processing. .. contents:: Table of Contents :local: :depth: 2 High-Level Architecture ----------------------- .. code-block:: text ┌─────────────────────────────────────────────────────────────────┐ │ Presentation Layer │ ├─────────────────────────────────────────────────────────────────┤ │ Django Templates │ REST API │ WebSocket │ Static Assets │ │ │ (DRF) │ (Channels)│ │ └─────────────────────────────────────────────────────────────────┘ │ ┌─────────────────────────────────────────────────────────────────┐ │ Application Layer │ ├─────────────────────────────────────────────────────────────────┤ │ Analytics │ Backtesting │ Tax │ Realtime │ Visualization │ │ Services │ Engine │ Calc│ Feeds │ Dashboards │ └─────────────────────────────────────────────────────────────────┘ │ ┌─────────────────────────────────────────────────────────────────┐ │ Domain Layer │ ├─────────────────────────────────────────────────────────────────┤ │ Portfolio │ Assets │ Users │ Transactions │ Data Sources │ │ Models │ Models │ Models│ Models │ Adapters │ └─────────────────────────────────────────────────────────────────┘ │ ┌─────────────────────────────────────────────────────────────────┐ │ Infrastructure Layer │ ├─────────────────────────────────────────────────────────────────┤ │ PostgreSQL │ Redis │ Celery │ File Storage │ External APIs │ │ Database │ Cache │ Worker │ │ (Yahoo Finance) │ └─────────────────────────────────────────────────────────────────┘ Core Components --------------- Django Application Structure ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The application is organized into focused Django apps: .. code-block:: text personal_finance/ ├── analytics/ # Portfolio analytics and metrics ├── assets/ # Asset management and price data ├── backtesting/ # Strategy simulation engine ├── contrib/ # Third-party integrations ├── data_profiler/ # Data validation and profiling ├── data_sources/ # Market data adapters ├── portfolios/ # Portfolio and position management ├── realtime/ # WebSocket streaming services ├── tax/ # Tax calculation and reporting ├── users/ # User management and authentication └── visualization/ # Charting and dashboard services Configuration and Routing ~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: text config/ ├── settings/ # Environment-specific settings │ ├── base.py # Common settings │ ├── local.py # Development settings │ ├── production.py # Production settings │ └── test.py # Testing settings ├── urls.py # Main URL routing ├── api_router.py # API endpoint routing ├── asgi.py # ASGI application (WebSockets) ├── wsgi.py # WSGI application (traditional HTTP) └── celery_app.py # Celery configuration Data Flow Architecture ---------------------- Request Processing Flow ~~~~~~~~~~~~~~~~~~~~~~~ 1. **HTTP Requests**: Routed through Django's URL dispatcher 2. **API Requests**: Handled by Django REST Framework serializers/viewsets 3. **WebSocket Connections**: Managed by Django Channels consumers 4. **Background Tasks**: Queued via Celery for asynchronous processing Data Processing Pipeline ~~~~~~~~~~~~~~~~~~~~~~~~ .. mermaid:: graph TD A[External Data Sources] --> B[Data Ingestion] B --> C[Data Validation] C --> D[Data Storage] D --> E[Analytics Processing] E --> F[Real-time Updates] F --> G[Client Applications] Service Layer Pattern --------------------- Each domain module follows a consistent service layer pattern: .. code-block:: python # Example: Analytics Service Structure analytics/ ├── __init__.py ├── models.py # Data models ├── services.py # Business logic services ├── serializers.py # API serialization ├── views.py # HTTP request handlers ├── consumers.py # WebSocket consumers ├── tasks.py # Celery background tasks ├── admin.py # Django admin integration └── tests/ # Test suite Service Interfaces ~~~~~~~~~~~~~~~~~~ All services implement consistent interfaces: .. code-block:: python class BaseService: """Base service class with common patterns.""" def __init__(self, user=None): self.user = user def validate_permissions(self, obj): """Check user permissions for object access.""" pass def get_queryset(self): """Return filtered queryset for user.""" pass Background Processing --------------------- Celery Task Architecture ~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: text Background Tasks: ├── Data Ingestion Tasks │ ├── fetch_market_data.py │ ├── update_asset_prices.py │ └── import_transactions.py ├── Analytics Tasks │ ├── calculate_portfolio_metrics.py │ ├── generate_performance_reports.py │ └── update_risk_metrics.py ├── Tax Processing Tasks │ ├── calculate_capital_gains.py │ ├── identify_tax_lots.py │ └── generate_tax_reports.py └── Maintenance Tasks ├── cleanup_old_data.py ├── backup_database.py └── system_health_checks.py Task Queue Strategy ~~~~~~~~~~~~~~~~~~~ * **High Priority**: Real-time price updates, user-initiated calculations * **Normal Priority**: Scheduled analytics, report generation * **Low Priority**: Data cleanup, system maintenance Security Architecture --------------------- Authentication & Authorization ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * **Session-based Authentication**: For web interface * **Token Authentication**: For API access * **Permission Framework**: Django's built-in permissions with custom extensions Data Protection Layers ~~~~~~~~~~~~~~~~~~~~~~ 1. **Input Validation**: All user inputs validated at API boundary 2. **SQL Injection Protection**: Django ORM with parameterized queries 3. **CSRF Protection**: Django's CSRF middleware 4. **XSS Protection**: Context-aware output encoding 5. **Sensitive Data Handling**: Encrypted storage for API keys Scalability Considerations -------------------------- Horizontal Scaling Points ~~~~~~~~~~~~~~~~~~~~~~~~~ * **Web Servers**: Multiple Django instances behind load balancer * **Background Workers**: Multiple Celery worker processes * **Database**: Read replicas for analytics queries * **Cache Layer**: Redis cluster for session and data caching Performance Optimizations ~~~~~~~~~~~~~~~~~~~~~~~~~ * **Database Indexing**: Strategic indexes on high-frequency queries * **Query Optimization**: Use of select_related and prefetch_related * **Caching Strategy**: Multi-level caching (Redis, Django cache framework) * **Static Assets**: CDN delivery for CSS/JS/images Monitoring & Observability -------------------------- Health Check Endpoints ~~~~~~~~~~~~~~~~~~~~~~ * ``/health/`` - Basic application health * ``/health/database/`` - Database connectivity * ``/health/cache/`` - Redis connectivity * ``/health/celery/`` - Background worker status Logging Architecture ~~~~~~~~~~~~~~~~~~~~ .. code-block:: text Logging Hierarchy: ├── Application Logs │ ├── personal_finance.analytics │ ├── personal_finance.backtesting │ └── personal_finance.realtime ├── Infrastructure Logs │ ├── django.db.backends │ ├── celery.worker │ └── channels.consumer └── Security Logs ├── django.security └── personal_finance.auth Deployment Architecture ----------------------- Production Topology ~~~~~~~~~~~~~~~~~~~ .. code-block:: text Production Environment: ├── Load Balancer (Nginx) ├── Application Servers (Django + Gunicorn) ├── Background Workers (Celery) ├── Message Broker (Redis) ├── Database (PostgreSQL) ├── File Storage (Local/S3) └── Monitoring (Logs + Metrics) Container Strategy ~~~~~~~~~~~~~~~~~~ * **Application Container**: Django app with Gunicorn * **Worker Container**: Celery workers * **Database Container**: PostgreSQL with persistent volumes * **Cache Container**: Redis for sessions and caching See Also -------- * :doc:`database` - Database schema and models * :doc:`services` - Service layer implementation details * :doc:`data_flow` - Detailed data processing flows * :doc:`../deployment/docker` - Container deployment guide