System Architecture Overview
The Personal Finance Platform follows a modular, service-oriented architecture built on Django with Celery for asynchronous processing.
High-Level Architecture
┌─────────────────────────────────────────────────────────────────┐
│ Presentation Layer │
├─────────────────────────────────────────────────────────────────┤
│ Django Templates │ REST API │ WebSocket │ Static Assets │
│ │ (DRF) │ (Channels)│ │
└─────────────────────────────────────────────────────────────────┘
│
┌─────────────────────────────────────────────────────────────────┐
│ Application Layer │
├─────────────────────────────────────────────────────────────────┤
│ Analytics │ Backtesting │ Tax │ Realtime │ Visualization │
│ Services │ Engine │ Calc│ Feeds │ Dashboards │
└─────────────────────────────────────────────────────────────────┘
│
┌─────────────────────────────────────────────────────────────────┐
│ Domain Layer │
├─────────────────────────────────────────────────────────────────┤
│ Portfolio │ Assets │ Users │ Transactions │ Data Sources │
│ Models │ Models │ Models│ Models │ Adapters │
└─────────────────────────────────────────────────────────────────┘
│
┌─────────────────────────────────────────────────────────────────┐
│ Infrastructure Layer │
├─────────────────────────────────────────────────────────────────┤
│ PostgreSQL │ Redis │ Celery │ File Storage │ External APIs │
│ Database │ Cache │ Worker │ │ (Yahoo Finance) │
└─────────────────────────────────────────────────────────────────┘
Core Components
Django Application Structure
The application is organized into focused Django apps:
personal_finance/
├── analytics/ # Portfolio analytics and metrics
├── assets/ # Asset management and price data
├── backtesting/ # Strategy simulation engine
├── contrib/ # Third-party integrations
├── data_profiler/ # Data validation and profiling
├── data_sources/ # Market data adapters
├── portfolios/ # Portfolio and position management
├── realtime/ # WebSocket streaming services
├── tax/ # Tax calculation and reporting
├── users/ # User management and authentication
└── visualization/ # Charting and dashboard services
Configuration and Routing
config/
├── settings/ # Environment-specific settings
│ ├── base.py # Common settings
│ ├── local.py # Development settings
│ ├── production.py # Production settings
│ └── test.py # Testing settings
├── urls.py # Main URL routing
├── api_router.py # API endpoint routing
├── asgi.py # ASGI application (WebSockets)
├── wsgi.py # WSGI application (traditional HTTP)
└── celery_app.py # Celery configuration
Data Flow Architecture
Request Processing Flow
HTTP Requests: Routed through Django’s URL dispatcher
API Requests: Handled by Django REST Framework serializers/viewsets
WebSocket Connections: Managed by Django Channels consumers
Background Tasks: Queued via Celery for asynchronous processing
Data Processing Pipeline
Service Layer Pattern
Each domain module follows a consistent service layer pattern:
# Example: Analytics Service Structure
analytics/
├── __init__.py
├── models.py # Data models
├── services.py # Business logic services
├── serializers.py # API serialization
├── views.py # HTTP request handlers
├── consumers.py # WebSocket consumers
├── tasks.py # Celery background tasks
├── admin.py # Django admin integration
└── tests/ # Test suite
Service Interfaces
All services implement consistent interfaces:
class BaseService:
"""Base service class with common patterns."""
def __init__(self, user=None):
self.user = user
def validate_permissions(self, obj):
"""Check user permissions for object access."""
pass
def get_queryset(self):
"""Return filtered queryset for user."""
pass
Background Processing
Celery Task Architecture
Background Tasks:
├── Data Ingestion Tasks
│ ├── fetch_market_data.py
│ ├── update_asset_prices.py
│ └── import_transactions.py
├── Analytics Tasks
│ ├── calculate_portfolio_metrics.py
│ ├── generate_performance_reports.py
│ └── update_risk_metrics.py
├── Tax Processing Tasks
│ ├── calculate_capital_gains.py
│ ├── identify_tax_lots.py
│ └── generate_tax_reports.py
└── Maintenance Tasks
├── cleanup_old_data.py
├── backup_database.py
└── system_health_checks.py
Task Queue Strategy
High Priority: Real-time price updates, user-initiated calculations
Normal Priority: Scheduled analytics, report generation
Low Priority: Data cleanup, system maintenance
Security Architecture
Data Protection Layers
Input Validation: All user inputs validated at API boundary
SQL Injection Protection: Django ORM with parameterized queries
CSRF Protection: Django’s CSRF middleware
XSS Protection: Context-aware output encoding
Sensitive Data Handling: Encrypted storage for API keys
Scalability Considerations
Horizontal Scaling Points
Web Servers: Multiple Django instances behind load balancer
Background Workers: Multiple Celery worker processes
Database: Read replicas for analytics queries
Cache Layer: Redis cluster for session and data caching
Performance Optimizations
Database Indexing: Strategic indexes on high-frequency queries
Query Optimization: Use of select_related and prefetch_related
Caching Strategy: Multi-level caching (Redis, Django cache framework)
Static Assets: CDN delivery for CSS/JS/images
Monitoring & Observability
Health Check Endpoints
/health/- Basic application health/health/database/- Database connectivity/health/cache/- Redis connectivity/health/celery/- Background worker status
Logging Architecture
Logging Hierarchy:
├── Application Logs
│ ├── personal_finance.analytics
│ ├── personal_finance.backtesting
│ └── personal_finance.realtime
├── Infrastructure Logs
│ ├── django.db.backends
│ ├── celery.worker
│ └── channels.consumer
└── Security Logs
├── django.security
└── personal_finance.auth
Deployment Architecture
Production Topology
Production Environment:
├── Load Balancer (Nginx)
├── Application Servers (Django + Gunicorn)
├── Background Workers (Celery)
├── Message Broker (Redis)
├── Database (PostgreSQL)
├── File Storage (Local/S3)
└── Monitoring (Logs + Metrics)
Container Strategy
Application Container: Django app with Gunicorn
Worker Container: Celery workers
Database Container: PostgreSQL with persistent volumes
Cache Container: Redis for sessions and caching
See Also
database - Database schema and models
services - Service layer implementation details
data_flow - Detailed data processing flows
../deployment/docker - Container deployment guide